Dehumanising the homeless through language

Post 6 by Alice Stollery

Web Scraping Tools

Twitter has become both a social and professional platform allowing dissemination of anything from random thoughts, ignorance and pointless memes to breaking news and public opinion. With 313 million active global users recording and sharing their thoughts, feelings and experiences, twitter is a real-time source of information and has become a medium in which people can keep up with those they know and those they don’t. The 140-character limitation on posts makes it a perfect tool for researching public opinion and scraping the platform for data, without being overwhelmed.


Web Scraping Process

Twitter archiver was my main source when scraping the web, as it allows you to create a search rule and, unlike other tools such as twitter advanced search or facebook, it collates the results into a single excel spreadsheet. This feature became invaluable in gaining insights from the results as it allowed me to sift through the information using specific terms, further refining my results. Insights often came as a result of tangents, originating in previous search results.

FullSizeRender 40
A simple visualisation of my process of navigating web scraping and twitter archiver. I found I went off on tangents from previous results.

Not being a twitter user myself, I stumbled at the start. I created a twitter account and downloaded twitter archiver and linked it to my gmail account. Initially, I ran searches that were very specific, in an attempt to find information on stereotyping and the technological divide within homelessness. I set the location to Sydney, however, this failed as I did not receive a single result. So, I changed the location and widened the search to Australia. Again, I was being too specific with the number of words I was using and twitter archiver came back with nothing.

Screen Shot 2016-09-05 at 23.26.30
A simple visualisation of my process of navigating web scraping and twitter archiver. I found I went off on tangents from previous results.

Findings

I then decided to change my approach and create a simple search of ‘homeless’ and ‘stereotyping’ which produced 14, 931 results. I then used the search tool to search for key words from the group issue mapping class within the data set. This helped me to break down the vast amount of information and to see what people were saying about issues within homelessness. This became a very interesting process. The initial words I searched within the results were quite basic as I was still getting use to using the software. However, they still provided insights and I have listed the most frequent words below.

Screen Shot 2016-09-06 at 00.08.42
A simple visualisation of my process of navigating web scraping and twitter archiver. I found I went off on tangents from previous results.

Interestingly, homeless men were referred to 4,279 times compared to only 251 times for homeless women. This is in line with the statistics revealed through one of my earlier posts that stated 82% of Sydney’s homeless are male and only 17% are female. As these posts were not Sydney specific, it is interesting to see that these statistics may also be a good indication of the situation in other parts of the world. I am curious as to why the numbers of homelessness between sexes differs so significantly. And can begin to understand why previous sources outlined a lack of services tailored to homeless women. I can only assume that this is due to less demand for them..? I could look further into the specific causes of male homelessness, contrast it to female homelessness and see if there is an opportunity to intervene with my design response.

Another observation was that the word ‘help’ only appeared in 1,137 posts out of 15,000. Looking further into these posts I found, ‘help’ took different forms. Some were genuine posts about helping the homeless with information of individuals lending a hand or community projects. It was really interesting to see how others were approaching and tackling the issue on a personal level.

genuine help
A simple visualisation of my process of navigating web scraping and twitter archiver. I found I went off on tangents from previous results.

Other twitter users made genuine offers help. In his case twitter was used as a form of communication to reach people in a particular area to help assist in helping those in need. This highlighted the possibility of technological responses that act as a connection between those with something to offer and those in need. Service design could bridge the gap between say, small businesses with food or accomodation available and the homeless.

Screen Shot 2016-09-06 at 00.28.26Screen Shot 2016-09-06 at 00.28.35

While each of the above insights were interesting, perhaps the most interesting insight was not only the presence of stigma in these posts but stigma as a result of the frequent misuse of the word homeless. While there were 15,000 posts that included the word homeless, I found that more often than not people were using it as part of casual conversation, to describe their lack of dress sense or effort invested in the appearance of friends or celebrities.

Screen Shot 2016-09-05 at 23.46.30
A simple visualisation of my process of navigating web scraping and twitter archiver. I found I went off on tangents from previous results.

Screen Shot 2016-09-06 at 20.57.23

It seems that, no matter how hard I try to broaden my understanding of the issue, I always seem to arrive back at stigma, perceptions of the homeless and ignorance towards their circumstances.After seeing these tweets, I decided to look into how the misuse of language is hindering our ability to tackle homelessness. As a result, I then ran a search on the term hobo to understand how often it was being used within the twitter sphere. This search found 10,732 results with the term hobo included in it.

“RT @emmaabel_: I am going to try and make myself look decent tmmr and not like a hobo”

“@Lizbeth_923: First Date And I Look Like A Hobo 🙂”

I believe the ubiquitous misuse of language surrounding homelessness is dehumanising the homeless, and ultimately, taking away from the issue. This is not only present in social conversations and personal online interactions, but is also reinforced by the fashion industry as seen below with the release of the ‘hobo’ bag.

Screen Shot 2016-09-06 at 00.59.19Shockingly, the term hobo is also being used as a design response to the issue, evident in the iHobo app. The virtual pet app that puts a homeless person in your pocket for you to feed and take care of. Forget to feed your hobo and he dies or runs off to get drugs. I think using gaming to tackle peoples perceptions is an interesting idea but I can’t help but feel this approach is distasteful, to say the least, and is reinforcing the publics stereotypical and often negative perceptions on the issue, not to mention dehumanising those in need.

Screen Shot 2016-09-06 at 18.50.39Screen Shot 2016-09-06 at 18.51.11Screen Shot 2016-09-06 at 18.52.20

To further investigate this area, I could also try searching the term ‘tramp’ and other common names used to describe the homeless. The above tweets highlight a severe lack of empathy among the general population for those suffering from homelessness. Homelessness does not seem to be a topic that people are talking passionately about. The homeless have fallen by the wayside and we are all so desensitised to the issue that homelessness has become commonplace in daily language for all the wrong reasons.


Design Response

Design responses could enable change in this area, and I would like to focus on the role language plays in the issue. I think there are already a number of individuals and NGO’s working to directly help the homeless so I would like to instead create a design response that tackles the wider issue and aims to influence the views people have of the homeless. Tackling this wider problem of perception, assumptions and language would aim to influence the common vernacular  rather than direct action on a smaller scale. This would hopefully result in a knock on effect, creating empathy and engagement among the wider population, to ultimately generate positive outcomes on a wider scale.

In terms of it’s form, I could create a twitter bot that calls people out on their misuse of particular words. However I think this would breed hostility rather than empathy. Language will be an important element and in order to generate a feeling of empathy I think the design would be suited to a poetic response that encompasses feelings and a the contradiction of meanings.

In an attempt to reveal relationships between language and the the number of homeless people, I could visualise the frequency of misuse of vital words. Perhaps I could plot the locations of these misuses and correlate this data with the number of homeless people in that particular area to see the relationships between the two and to discover how local attitudes affect the issue. However I am hesitant to do that as I do not think data will generate an empathetic response in the way that I am hoping.


Five Point Summary

  1. Twitter and twitter archiver are both very effective tools in scraping the web for data to understand how the wider population are feeling towards homelessness.
  2. It is important to remain open to outcomes outside your initial understanding. I went into this process with a focus on stigma and the technological divide, yet ended up delving further into the role language plays in creating barriers to a solution.
  3. Those offering food, services or accommodation on a personal level have great difficulty in finding the right people to help. Perhaps a service could be designed to bridge this disconnect.
  4. More often that not, conversation around homelessness is not referring to the issue at all and is used more so in casual conversation to describe appearances. The misuse of homeless terminology is rife among the online community and has seeped into the common vernacular ultimately resulting in a lack of empathy towards sufferers.
  5. Homelessness does not seem to be a topic that people are talking passionately about. The homeless have fallen by the wayside and we are all so desensitised to the issue that homelessness has become commonplace in daily language for all the wrong reasons.

References

AlaynaaaMarie. 2016, ‘I just added this to my closet on Poshmark: Michael Kors Julian Chain Exotic Hobo’, Twitter post, 2 September, viewed 2 September 2016,https://twitter.com/AlaynaaaMarie/status/771826144198873088>.

Alex. 2016, ‘I look like a hobo walking to class but idgaf’, Twitter post, 1 September, viewed 2 September 2016,< https://twitter.com/alexj0ness/status/771405203354550272>.

Bryant, M. 2010, iHobo app puts a homeless man in your pocket, The Next Web, viewed 31 August 2016,<http://thenextweb.com/apps/2010/05/10/ihobo-app-puts-a-homeless-man-in-your-pocket/#gref&gt;.

Dan Kenny, 2016. ‘Can’t think of any but I’ll happily help give it out in the streets after service, be done 11:30ish’, Twitter post, 2 September, 2 September 2016,< https://twitter.com/DanKenny29/status/771812145558347779>.

Dream Closet. 2016, ‘Always torn between getting ready and looking cute or being lazy and looking like a homeless person’, Twitter post, 2 September, viewed 2 September 2016,< https://twitter.com/TheDreamCIoset/status/771684469287845892>.

Emmabel. 2016, ‘I am going to try and make myself look decent tmmr and not like a hobo’, Twitter post, 1 September, viewed 2 September 2016,<https://twitter.com/emmaabel_/status/771505054201241600>.

EWapo. 2014, ‘I’m playing a game called iHobo where you look after a tramp and I’m legit checking up on him every 5 minutes, I’m here for you trampy’, Twitter post, 10 January, viewed 3 September 2016,<https://twitter.com/EWapo/status/421761288617091072>.

FryGuy84. 2015, ‘who remembers that app iHobo when you had to look after a tramp like a tamagotchi’, Twitter post, 29 January, viewed 3 September 2016,< https://twitter.com/fryguy84/status/560837097612140545>.

Hungry Hoss, 2016. ‘At a wedding in Brighton & there’s a shit load of food left over… does anyone know a homeless shelter or similar who’d make use?’, Twitter post, 2 September, viewed 2 September 2016,<https://twitter.com/HungryHoss/status/771804636298809345>.

Lizbeth_936. 2016, ‘First date and I look like a hobo’, Twitter post, 1 September, viewed 2 September 2016,< https://twitter.com/Lizbeth_936/status/771517651130601472>.

NinjaRonnie. 2013, ‘Shit I forgot about my hobo’, Twitter post, 9 June, viewed 2 September 2016,< https://twitter.com/NinjaRonnie/status/343751075221872640>.

Pissedoff99. 2016, ‘You ignorant description kind of shows how insensitive people involved with fashion industry can be with social issues’, Twitter post, 3 September, viewed 3 September 2016,<https://twitter.com/PissedOff99/status/771977859829202944>.

Prank Videos, 2016. ‘He gave his ‘winning’ lottery ticket to a homeless man, gave the store owner the money to pretend its real, amazing’, Twitter post, 11 March, viewed 3 September 2016,< https://twitter.com/30SecPranks/status/708500013349900288>.

Smith, C. 2016, Twitter Statistics and Facts, DMR Stats and Gadgets, viewed 2 September 2016,<http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats/>.

Advertisement

Web-scraping technique: #Online privacy

Written by Jiahui Li (nancy)

In order to gain a border understanding of online privacy that happened in people’s life, I looked up Twitter with web-scraping technique. Twitter as a social network is simply bring people closer to their interests and it’s still evolving with various options for its users. The network let users like create a profile, choose whom you would want to follow and post tweets which allow you share your mood and insight on the platform, as well as engage people build conversation around the world. All the tweets of people you follow appear as a shuffled list on your main Twitter page. Businesses have found Twitter to be an effective means of communication with their customers. The network connects businesses with their customers anytime, anywhere. However, it still has limitation of message number, following and follower.

On the other hand, twitter has built a unique function called “ Twitter Advanced Search”, which allow user to tailor search results to specific date ranges, people and more. This makes it easier to find specific Tweets. It been used for people who looking for specific topics and areas that can easy focus on their conversation between same topic. Based on the research, people has started against “privacy information usage” to protect their own information, they believe this is the most expedient way.  Therefore, people share on Twitter with representative image, own experience, articles and videos to not only express their positions, but to encourage more people to protect their own online privacy. On the other hand, business also exist as a big part in Twitter Advanced Search that help people dealing with their privacy issues. (See the image below)

Screen Shot 2016-09-03 at 9.52.22 PM
(Twitter Advanced Search with key words “commercial online privacy)

 

Screen Shot 2016-09-03 at 4.48.39 PM
(Twitter Advanced Search with key words “commercial online privacy)

Get start of using web-scraping, I set up the key words as “ web personal online privacy”. Most of these tweets are surrounding suggestions and experience with how to protect personal information online to avoid commercial website. Besides, twitter doesn’t have much conversations to communicate the issue specific into the keywords I set up; most of them shared between 2009-2016. At the same time, I have identified how hashtags/key words trend over the time, between 2009-2010, most of people start think about their online privacy and ask for how can they protect the information not be used; after 2010, people described the issue and list “how to control”; in the most recent post, it listed “should you tape over your webcam? personal guide to online privacy”.

Screen Shot 2016-09-03 at 10.34.33 PM
( Twitter Advanced Search,”keywords web personal online privacy”, 2016)

 

Then I reset the hashtags to “web use privacy”. In these tweets, it is clear that personal opinions and positions are significantly less than those advertisings, which are used to explain how people deal with privacy issue. In other words, few tweets posted the position of “People Limit Web Use Due To Privacy Concerns” happened in America. Concerns about privacy and security are discouraging people from posting to social networks, expressing controversial opinions, conducting online banking and shopping from online retailers.

Screen Shot 2016-09-03 at 10.59.30 PM
(Twitter Advanced Search, “web use privacy”, 2016)

 

Screen Shot 2016-09-03 at 11.18.11 PM
(Twitter Advanced Search, “web use privacy”, 2016)

It’s interesting to look at is there a video is shared on Twitter, which shows the online privacy secret that some big companies didn’t tell you. The video come up with creepy and strong music, the text put you in a serious atmosphere; engaging and warning people protect their online privacy.

       (Vidivo.com 2010)

At the end, the positions and insights from different people all strongly proved the wealth of suggestions and experience through social media. It can help us get a deeper understanding of the seriousness of the issues, as well as provide more viable solutions. For future exploration and my design project, I would like using this data -scarping  technique to generate a range of privacy data flow and make them visually express the seriousness of online privacy.

5 point summary:

  • Twitter Advanced Search help people easily gather information and research on social media.
  • People has stand out to against companies use their personal information without their concern.
  • More effective solutions/suggestions surrounding online privacy can be found out with web-scraping technique
  • Concerns about privacy and security are discouraging people from posting to social networks

  • A commercial website need post a privacy policy if it collects personally identifiable info

 

Reference

Vidivo.com 2010, Online Privacy Secrets EXPOSED Commercial – What Google Isn’t Telling Us, video recording, YouTube, viewed 3 September 2016,<http://www.youtube.com/watch?v=QYP_hZmcRgg>.